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A B S T R A C T

Network pharmacology uses bioinformatics to broaden our understanding of drug actions and thereby to ad-
vance drug discovery. Here we apply network pharmacology to generate testable hypotheses about the multi-
target mechanism of celastrol against rheumatoid arthritis. We reconstructed drug–target pathways and net-
works to predict the likely protein targets of celastrol and the main interactions between those targets and the
drug. Then we validated our predictions of four candidate targets (IKK-β, JNK, COX-2, MEK1) by performing
docking studies with celastrol. The results suggest that celastrol acts against rheumatoid arthritis by regulating
the function of several signaling proteins, including MMP-9, COX-2, c-Myc, TGF-β, c-JUN, JAK-1, JAK-3, IKK-β,
SYK, MMP-3, JNK and MEK1, which regulate the functions of Th1 and Th2 cells, macrophages, fibroblasts and
endothelial cells in rheumatoid arthritis. Celastrol is predicted to affect networks involved mainly in cancer,
connective tissue disorders, organismal injury and abnormalities, tissue development, cell death and survival.
This network pharmacology strategy may be useful for discovery of multi-target drugs against complex diseases.

1. Introduction

Rheumatoid arthritis is an immune-related disease that generally
gives rise to continuous joint destruction, decreased life expectancy and
working ability, disability, and even elevated mortality [1–3]. The
disease is most commonly treated using synthetic and biological dis-
ease-modifying anti-rheumatic drugs (DMARDs) [4,5]. These drugs
cannot cure the disease, however, and they often cause severe side ef-
fects, such as reduced immunity and cancer. Moreover, biological
DMARDs place an extreme financial burden on patients without
showing correspondingly high efficacy [5–7].

Traditional Chinese medicine may be able to offer more cost-effec-
tive alternative treatments against rheumatoid arthritis [8]. For cen-
turies, the principal active ingredient of Tripterygium wilfordii Hook.f.,
called celastrol, has been used in traditional Chinese medicine to treat
inflammation and autoimmune diseases including rheumatoid arthritis,
systemic lupus erythematosus, nephritis, and asthma [9,10]. Celastrol
shows anti-inflammatory and immunomodulatory activities, as well as
pro-apoptotic effects in many types of cancer, such as ovarian and
pancreatic cancers, myeloma, myeloid leukemia, and thyroid carci-
noma [11–22]. However, how celastrol exerts therapeutic effects on
patients with rheumatoid arthritis is unclear.

Herbal medicines such as celastrol feature multiple components and
multiple targets, and analyzing this complexity can be achieved
through systems pharmacology as applied in network pharmacology
analysis. Systems pharmacology is an emerging field of pharmacology
which utilizes network analysis of drug action as one of its approaches
and network pharmacology is a method by integrating systems ap-
proaches, computational and experimental methods to illuminate the
molecular mechanisms of drug [23]. Because network pharmacology
can provide a good understanding of the principles of network theory
and systems biology, it has been considered to be the next paradigm in
drug discovery [24].

In the present study, we explored potential mechanisms of action of
celastrol against rheumatoid arthritis using an integrated systems
pharmacology approach. First, we identified potential molecular targets
of celastrol and the interaction pathways in which those targets play
roles. Then we examined overlap in those pathways and the networks
they form. We also performed docking studies to predict the interac-
tions that allow celastrol to bind to its predicted targets. Our results
may help understanding the mechanisms celastrol treats rheumatoid
arthritis and, more generally, to discover natural products against
complex diseases.
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2. Materials and methods

2.1. Data preparation

Rheumatoid arthritis-related genes were obtained from the National
Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/
) using the term “rheumatoid arthritis”, followed by filtering with the

term “Homo sapiens”. Potential targets of celastrol were obtained in on-
line resources in systems pharmacology (http://lsp.nwu.edu.cn/index.
php) and PubChem (https://pubchem.ncbi.nlm.nih.gov/).

A total of 25 human proteins likely targeted by celastrol were ob-
tained from TCMSP (Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform, http://lsp.nwu.edu.cn/
tcmsp.php) and the PubChem database. Their symbols were uploaded

Fig. 1. Workflow in the network pharmacology approach.

Fig. 2. Pathways and networks associated with rheumatoid arthritis. (A) Pathways formed by proteins associated with rheumatoid arthritis. (BeC) Representative
networks formed by proteins associated with rheumatoid arthritis.
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into IPA, and 111 pathways and 3 networks were assembled.

2.2. Prediction of pathways and networks affected by celastrol

Pathways and networks were built by Ingenuity Pathway Analysis
(IPA, www.ingenuity.com) based on the functions of the human genes
related to rheumatoid arthritis and the potential celastrol targets.
Enrichment Analysis of RA Target Gene Ontology (GO) Enrichment and
Network were performed by R (R 3.6.0 for Windows) and Cytoscape
3.6.1 (http://www.cytoscape.org).

Pathways and networks were ranked according to the amounts of
the molecules participating in pathways and networks, respectively.
Pathways and networks shared by targets related to rheumatoid ar-
thritis and the potential celastrol targets were identified using the
“Compare” module within IPA.

2.3. Binding of celastrol to predicted targets

Docking studies were performed with selected targets using
Autodock4.2 based on the crystal structures of the targets as deposited
in the RCSB Protein Data Bank (http://www.pdb.org/pdb/home/home.
do). A CHARMM force field was employed, and hydrogen atoms were
added to the proteins. The binding site was defined as a sphere en-
compassing protein residues within 12 Å of the original ligand. Default

values were used for other parameters, and Genetic Algorithm runs
were performed for each ligand. The protocol of the integrated systems
pharmacology approach is described in Fig. 1.

3. Results

3.1. Rheumatoid arthritis-related gene pathways and networks

A total of 1175 human genes associated with rheumatoid arthritis
were identified in the GenBank database, and the encoded proteins
were assembled into a set of 339 pathways and 25 networks using IPA.
These pathways involve primarily activation of Th1 and Th2 cells,
macrophages and fibroblasts in rheumatoid arthritis; altered T cell and
B cell signaling in the disease and signaling pathways during the acute
phase of the disease. The networks involve mainly cell movement,
immune cell trafficking, hematological system development and func-
tion, inflammatory response, connective tissue disorders, organismal
injury and abnormalities, as well as cell-to-cell signaling and interac-
tions (Fig. 2).Gene Ontology (GO) Enrichment and Network Analysis
showed that T cell activation, regulation of lymphocyte activation,
leukocyte migration, regulation of cell-cell adhesion and leukocyte cell-
cell adhesion covered the top 3 functions of RA target proteins (Fig. 3).

Fig. 3. Gene Ontology (GO) enrichment and network analysis of RA target genes.
(A) Top 15 functionally enriched biological processes with corresponding adjusted p-values analyzed by clusterProfiler, which are displayed in a dot plot. The color
scales indicated the different thresholds of adjusted p-values, and the sizes of the dots represented the gene count of each term. (B) Interaction networks between
enriched biological processes analyzed by enrichMap in the clusterProfiler package. The color scales indicated different thresholds of adjusted p-values, and the sizes
of the dots represented the gene count of each term. (C) Sub-network showing important genes in top 5 GO term. The subnetwork depicts the relationships among 5
GO term and RA target genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Networks involving celastrol targets and their functions

The predicted celastrol targets participate primarily in such path-
ways as hepatic fibrosis, hepatic stellate cell activation, IL-8 signaling,
and colorectal cancer metastasis signaling. These networks are involved
mainly in cancer, connective tissue disorders, organismal injury and
abnormalities, tissue development, cell death and survival, as well as
endocrine system development and function (Fig. 4).

3.3. Overlapping networks and special celastrol targeted proteins

228 pathways were identified by “Canonical Pathway” and
“Networks” modules of IPA, and 3 shared networks were obtained be-
tween the set of predicted celastrol targets and the set of proteins en-
coded by rheumatoid arthritis-associated genes. These overlapping
pathways involve primarily activation of Th1 and Th2 cells, macro-
phages, fibroblasts and endothelial cells in rheumatoid arthritis. The
networks involve primarily cancer, connective tissue disorders, orga-
nismal injury and abnormalities, tissue development, cell death and
survival.

Based on the canonical pathways and networks, we predicted the
following proteins to be the direct targets of celastrol in rheumatoid
arthritis: MMP-9, COX-2, c-Myc, TGF-β, c-JUN, JAK-1, JAK-3, IKK-β,
SYK, MMP-3, JNK, and MEK1 (Fig. 5).

3.4. Binding mode

Docking studies were performed between celastrol and the fol-
lowing selected potential targets (Fig. 6): IKK-β (PDB: 3RZF), JNK
(PDB:3PTG), COX-2 (PDB:6COX) and MEK1 (PDB:1S9J). These poten-
tial targets were chosen because they are high-degree nodes in rheu-
matoid arthritis-associated networks potentially affected by celastrol.
High-degree nodes often play more important network roles than low-
degree nodes.

The analysis in Fig. 6a predicts that celastrol binds to 3RZF by

forming a stable hydrophobic interaction with a binding pocket con-
sisting of GLY-102, GLU-100, CYS-99, TYR-98, LYS-106, ASP-103, GLY-
101, VAL-152, ILE-165, ARG-31 and LEU-21. A π− π interaction is
predicted to form between the benzene ring of celastrol and TYR-98, as
well as three H-bonds between the oxygen atoms on celastrol and GLY-
102 (length: 1.9 Å), GLU-100 (2.2 Å) and CYS-99 (1.8 Å). These inter-
actions anchor celastrol to the binding site in 3RZF.

The analysis in Fig. 6b predicts that celastrol binds tightly to a
highly hydrophobic pocket of 3PTG through stable hydrophobic inter-
actions with 19 residues, including LEU-206, ILE-124, SER-193, VAL-
196, VAL-197, ASN-152, and ALA-151. The analysis in Fig. 5c predicts
that celastrol binds compactly to a pocket in 6COX consisting of 16
residues, including ASP-239, THR-237, ASP-229, TRP-139, ASN-231,
GLU-236, LEU-145, SER-146, and ARG-26. Celastrol is also predicted to
form an H-bond with ARG-216 (2.2 Å). In Fig. 5d, celastrol is predicted
to interact with 1S9J via PHE-209, ASN-78, ILE-139, ILE-99, LYS-97,
GLY79, VAL-224, MET-143, and ILE-141. Celastrol is also predicted to
form H-bonds with PHE-209 (length: 2.8 Å) and ASN-78 (3.4 Å).

These docking studies provide evidence how celastrol binds to its
targets, which may be useful for basic understanding the mechanism of
drug action.

4. Discussion

Traditional drug discovery is largely based upon the paradigm of
‘one molecule, one target, one disease’, but there is a growing re-
cognition that drugs work by targeting multiple proteins [25–31]. In
addition, biological pathways and networks are abundant and robust,
so affecting only a single target can easily fail to produce the desired
therapeutic effects [17,32–40]. Therefore, the development of models
that can predict multiple drug-target interactions may hold the key to
future success in drug discovery against complex diseases such as
rheumatoid arthritis.

In the present report, we integrated information from publicly
available databases to predict interactions between celastrol and its

Fig. 4. Pathways and networks by predicted celastrol targets. (A) Pathways involving predicted celastrol targets. (BeC) Representative networks assembled by
predicted celastrol targets.
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potential targets in rheumatoid arthritis, as well as the numerous sig-
naling pathways and networks in which celastrol targets participate.
We also performed docking studies to predict specific interactions be-
tween celastrol and its predicted targets.

Our pathway analysis suggests that celastrol may exert therapeutic
effects against rheumatoid arthritis by regulating the functions of Th1
and Th2 cells, macrophages, fibroblasts and endothelial cells. These
results are consistent with several studies in vitro and in vivo suggesting
that celastrol inhibits several inflammatory chemokines, including

mundane T cell expressed and secreted (RANTES), monocyte che-
moattractant protein 1 (MCP-1), macrophage inflammatory proteins
(MIP-1a), and growth-regulated oncogene/keratinocyte chemoat-
tractant (GRO/KC); as well as cytokines such as TNF-α and IL-1β [10].
Thus, celastrol suppresses TNF-α-induced production of anti-apoptosis
proteins (e.g., Bcl-2, Bcl-XL, survivin), proteins involved in invasion
(e.g., MMP-9) [11,41].

Our results provide evidence that celastrol acts on not only pro-
gression of rheumatoid arthritis, but also cancer development. The

Fig. 5. Representative signaling pathways and overlapped networks linked to rheumatoid arthritis and targeted by celastrol. (A) Colorectal cancer metastasis
signaling. (B) Hepatic fibrosis/hepatic stellate cell activation. (C) Merged network involving predicted celastrol targets (purple lines) and proteins encoded by
rheumatoid arthritis-associated genes (black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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networks that we identified as associated with rheumatoid arthritis and
affected by celastrol involve primarily cancer, connective tissue dis-
orders, organismal injury and abnormalities, tissue development, cell
death and survival. Consistent with our findings, celastrol has been
shown to inhibit the proliferation of various cancer cell lines, including
C6 glioma, human monocytic leukemia, melanoma, pancreatic cancer,
RPMI 8266 myeloma, and K-562 human chronic myelogenous leukemia
[42–46].

Though this network pharmacology strategy may be a quick method
to predict the targets by drugs on complex diseases, the targets some-
times can be obtained too much. It is necessary to verify the targets by
cell experiments.

In particular, our results predict that celastrol exerts therapeutic
effects against rheumatoid arthritis at least in part by modulating the
function of MMP-9, COX-2, c-Myc, TGF-β, c-JUN, JAK-1, JAK-3, IKK-β,
SYK, MMP-3, JNK and MEK1. Our study may inspire and guide further
work to establish the molecular targets of celastrol in rheumatoid ar-
thritis and to apply the network pharmacology approach to drug dis-
covery against other inflammatory and autoimmune diseases.
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